ICLR 2020 论文实现代码

作者:IODA 时间:2020-03-24 点击数:

ICLR是公认的深度学习领域国际顶级会议之一,关注有关深度学习各个方面的前沿研究,在人工智能、统计和数据科学领域以及机器视觉、语音识别、文本理解等重要应用领域中发布了众多极其有影响力的论文。

ICLR 2020共有2594篇论文提交,其中48篇被接收为Talk Paper,107篇被接收为Spotlight Paper,532篇作为Poster Paper。

以下是由AI研习社整理的 ICLR 2020 论文实现代码,供大家学习!


60.BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by Coupling Binary Activations

论文地址:https://openreview.net/forum?id=r1x0lxrFPS

Github地址:https://github.com/Hyungjun-K1m/BinaryDuo


59.BayesOpt Adversarial Attack

论文地址:https://openreview.net/forum?id=Hkem-lrtvH

Github地址:https://github.com/rubinxin/BayesOpt_Attack


58.RaPP: Novelty Detection with Reconstruction along Projection Pathway

论文地址:https://openreview.net/forum?id=HkgeGeBYDB

Github地址:https://drive.google.com/drive/folders/1sknl_i4zmvSsPYZdzYxbg66ZSYDZ_abg?usp=sharing


57.Dynamics-Aware Embeddings

论文地址:https://openreview.net/forum?id=BJgZGeHFPH

Github地址:https://github.com/dyne-submission/dynamics-aware-embeddings


56.AdvectiveNet: An Eulerian-Lagrangian Fluidic Reservoir for Point Cloud Processing

论文地址:https://openreview.net/forum?id=H1eqQeHFDS

Github地址: https://github.com/DIUDIUDIUDIUDIU/AdvectiveNet-An-Eulerian-Lagrangian-Fluidic-Reservoir-for-Point-Cloud-Processing


55.AtomNAS: Fine-Grained End-to-End Neural Architecture Search

论文地址:https://openreview.net/forum?id=BylQSxHFwr

Github地址:https://github.com/meijieru/AtomNAS


54.Deep Audio Priors Emerge From Harmonic Convolutional Networks

论文地址:https://openreview.net/forum?id=rygjHxrYDB

Github地址:http://dap.csail.mit.edu/


53.Expected Information Maximization: Using the I-Projection for Mixture Density Estimation

论文地址:https://openreview.net/forum?id=ByglLlHFDS

Github地址:https://github.com/pbecker93/ExpectedInformationMaximization


52.A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

论文地址:https://openreview.net/forum?id=ryxWIgBFPS

Github地址:https://github.com/ec6dde01667145e58de60f864e05a4/CausalOptimizationAnon


51.Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings

论文地址:https://openreview.net/forum?id=SJxE8erKDH

Github地址:https://drive.google.com/file/d/15orWOM0WowN4OevkHstx600TgNtAXGcp/view?usp=sharing


50.Compositional Language Continual Learning

论文地址:https://openreview.net/forum?id=rklnDgHtDS

Github地址:https://github.com/yli1/CLCL


49.Lipschitz constant estimation of Neural Networks via sparse polynomial optimization

论文地址:https://openreview.net/forum?id=rJe4_xSFDB

Github地址:https://drive.google.com/drive/folders/1bkj0H6Thgd9sjRloyq9NBP0uO0v704E9?usp=sharing


48.Unrestricted Adversarial Examples via Semantic Manipulation

论文地址:https://openreview.net/forum?id=Sye_OgHFwH

Github地址:https://www.dropbox.com/s/69zx437t1dgo41b/semantic_attack_code.zip?dl=0


47.DiffTaichi: Differentiable Programming for Physical Simulation

论文地址:https://openreview.net/forum?id=B1eB5xSFvr

Github地址:https://github.com/yuanming-hu/difftaichi


46.Sub-policy Adaptation for Hierarchical Reinforcement Learning

论文地址:https://openreview.net/forum?id=ByeWogStDS

Github地址:https://anonymous.4open.science/r/de105a6d-8f8b-405e-b90a-54ab74adcb17/


45.Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring in Data

论文地址:https://openreview.net/forum?id=r1g6ogrtDr

Github地址:https://www.dropbox.com/sh/2gghao89strdotw/AAAYJ6XclnfeoS3AfN9Z-n5Wa?dl=0


44.Information Geometry of Orthogonal Initializations and Training

论文地址:https://openreview.net/forum?id=rkg1ngrFPr

Github地址:https://github.com/mandt-lab/adversarial-negative-sampling


43.Extreme Classification via Adversarial Softmax Approximation

论文地址:https://openreview.net/forum?id=rJxe3xSYDS

Github地址:https://github.com/mandt-lab/adversarial-negative-sampling


42.NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search

论文地址:https://openreview.net/forum?id=SJx9ngStPH

Github地址:https://github.com/automl/nasbench-1shot1


41.The Shape of Data: Intrinsic Distance for Data Distributions

论文地址:https://openreview.net/forum?id=HyebplHYwB

Github地址:https://github.com/xgfs/imd


40.Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation

论文地址:https://openreview.net/forum?id=B1xSperKvH

Github地址:https://github.com/nitin-rathi/hybrid-snn-conversion


39.Massively Multilingual Sparse Word Representations

论文地址:https://openreview.net/forum?id=HyeYTgrFPB

Github地址:https://github.com/begab/mamus


38.Learning The Difference That Makes A Difference With Counterfactually-Augmented Data

论文地址:https://openreview.net/forum?id=Sklgs0NFvr

Github地址:https://github.com/dkaushik96/counterfactually-augmented-data


37.Fractional Graph Convolutional Networks (FGCN) for Semi-Supervised Learning

论文地址:https://openreview.net/forum

Github地址:https://github.com/yuzhouchen92/


36.Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport

论文地址:https://openreview.net/forum?id=Bkf4XgrKvS

Github地址:https://github.com/matenure/OTCoarsening


35.Deep Semi-Supervised Anomaly Detection

论文地址:https://arxiv.org/abs/1801.03149

Github地址:https://github.com/lukasruff/Deep-SAD-PyTorch


34.Model Based Reinforcement Learning for Atari

论文地址:https://openreview.net/forum?id=S1xCPJHtDB

Github地址:http://bit.ly/2wjgn1a



33.And the Bit Goes Down: Revisiting the Quantization of Neural Networks

论文地址:https://openreview.net/forum?id=rJehVyrKwH

Github地址:https://drive.google.com/file/d/12QK7onizf2ArpEBK706ly8bNfiM9cPzp/view?usp=sharing


32.Behaviour Suite for Reinforcement Learning

论文地址:https://openreview.net/forum?id=rygf-kSYwH

Github地址: https://github.com/deepmind/bsuite


31.NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search

论文地址:https://openreview.net/forum?id=HJxyZkBKDr

Github地址: https://github.com/D-X-Y/NAS-Bench-201


30.Network Deconvolution

论文地址:https://openreview.net/forum?id=rkeu30EtvS

Github地址: https://github.com/yechengxi/deconvolution


29.Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning

论文地址:https://openreview.net/forum?id=B1xm3RVtwB

Github地址:  https://bit.ly/2mBJLyk




28.Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees

论文地址:https://openreview.net/forum?id=rJgJDAVKvB

Github地址: https://github.com/NeurEXT/NEXT-learning-to-plan/blob/master/main.ipynb



27.Disentangling neural mechanisms for perceptual grouping

论文地址:https://openreview.net/forum?id=HJxrVA4FDS

Github地址:https://bit.ly/2wdQYGd


26. The Logical Expressiveness of Graph Neural Networks

论文地址:https://openreview.net/forum?id=r1lZ7AEKvB

Github地址:https://anonymous.4open.science/r/787222e2-ad5e-4810-a788-e80f0fe7eff0/


25. Influence-Based Multi-Agent Exploration

论文地址:https://openreview.net/forum?id=BJgy96EYvr

Github地址:https://github.com/TonghanWang/EITI-EDTI


24. Ridge Regression: Structure, Cross-Validation, and Sketching

论文地址:https://openreview.net/forum?id=HklRwaEKwB

Github地址:https://github.com/liusf15/RidgeRegression


23. Encoding word order in complex embeddings

论文地址:https://openreview.net/forum?id=Hke-WTVtwr

Github地址:https://github.com/iclr-complex-order/complex-order


22. Enhancing Adversarial Defense by k-Winners-Take-All

论文地址:https://openreview.net/forum?id=Skgvy64tvr

Github地址:https://github.com/a554b554/kWTA-Activation


21. PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search

论文地址:https://openreview.net/forum?id=BJlS634tPr

Github地址:https://www.dropbox.com/sh/on9lg3rpx1r6dkf/AABG5mt0sMHjnEJyoRnLEYW4a?dl=0


20. Intensity-Free Learning of Temporal Point Processes

论文地址:https://openreview.net/forum?id=HygOjhEYDH

Github地址:https://github.com/shchur/ifl-tpp


19. Estimating Gradients for Discrete Random Variables by Sampling without Replacement

论文地址:https://openreview.net/forum?id=rklEj2EFvB

Github地址:https://github.com/wouterkool/estimating-gradients-without-replacement


18. Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

论文地址:https://openreview.net/forum?id=S1ldO2EFPr

Github地址: https://github.com/delta2323/gnn-asymptotics


17. BackPACK: Packing more into Backprop

论文地址:https://arxiv.org/abs/1912.10985

Github地址:https://github.com/toiaydcdyywlhzvlob/backpack


16. AtomNAS: Fine-Grained End-to-End Neural Architecture Search

论文地址:https://arxiv.org/abs/1912.12522

Github地址:https://github.com/meijieru/AtomNAS


15.FasterSeg: Searching for Faster Real-time Semantic Segmentation

论文地址:https://paperswithcode.com/paper/fasterseg-searching-for-faster-real-time

Github地址:https://github.com/TAMU-VITA/FasterSeg


14. NAS evaluation is frustratingly hard

论文地址:https://arxiv.org/abs/1912.12522

Github地址:https://github.com/antoyang/NAS-Benchmark


13.  Geom-GCN: Geometric Graph Convolutional Networks

论文地址:https://openreview.net/forum?id=S1e2agrFvS

Github地址:https://github.com/graphdml-uiuc-jlu/geom-gcn


12.  Deep Graph Matching Consensus

论文地址:https://arxiv.org/abs/2001.02525?context=cs

Github地址:https://github.com/JaminFong/FNA


11.  Convolutional Convolutional Neural Processes

论文地址:https://arxiv.org/abs/1910.13556v1

Github地址:https://github.com/cambridge-mlg/convcnp


10. Neural Machine Translation with Universal Visual Representation

论文地址:暂无

Github地址:https://github.com/cooelf/UVR-NMT


9. A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning

论文地址:https://arxiv.org/abs/2001.0689

Github地址:https://github.com/soochan-lee/CN-DPM


8. Gradient-Based Neural DAG Learning

论文地址:https://arxiv.org/abs/1906.02226

Github地址:https://github.com/kurowasan/GraN-DAG


7. Scale-Equivariant Steerable Networks

论文地址:https://arxiv.org/abs/1910.11093v1

Github地址:https://github.com/ISosnovik/sesn


6.Composition-Based Multi-Relational Graph Convolutional Networks

论文地址:https://arxiv.org/abs/1802.04944v1

Github地址:https://github.com/malllabiisc/CompGCN


5.Automatically Discovering and Learning New Visual Categories with Ranking Statistics

论文地址:

Github地址:https://github.com/k-han/AutoNovel


4.Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning

论文地址:暂无

Github地址:https://github.com/bayesgroup/pytorch-ensembles


3. Strategies for Pre-training Graph Neural Networks

论文地址:暂无

Github地址:https://github.com/snap-stanford/pretrain-gnns


2. Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering

论文地址:暂无

Github地址:https://github.com/AkariAsai/learning_to_retrieve_reasoning_paths


1. FreeLB: Enhanced Adversarial Training for Language Understanding

论文地址:https://arxiv.org/abs/1909.11764v2

Github地址:https://github.com/zhuchen03/FreeLB



Copyright© 2019All Rights Reserved. 运筹与优化研究院(IODA)版权所有!   登录